Characterization of Soluble $[RuCl_2P_2]_2$ (P = PPh₃), a Species Which has been Postulated to be Present in Solutions of RuCl₂P₃; Its Synthesis from Various Ru Compounds via a Novel Catalytic Process Involving Pyridylketones

ROB. C. J. VRIENDS, GERARD VAN KOTEN* and KEES VRIEZE

Anorganisch Chemisch Laboratorium, J. H. van't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, The Netherlands

Received November 29, 1977

The importance of the 14-electron species "RuCl₂- P_2 " (I) [1] is obvious from its key position in mechanisms proposed for processes catalyzed by RuCl₂P₃ [2]. Since I has never been isolated nor observed spectroscopically its existence has been inferred from the observation by ³¹P-NMR spectroscopy of a species, which has been postulated to be "(RuCl₂P₂)₂" (II), in solutions of RuCl₂P₃ (III) [3, 4]. Route 1 as well as route 2 can account for the formation of II and each route seems to be supported by ³¹P-NMR spectroscopic data [3, 4].

$$\begin{array}{ccc} \operatorname{RuCl_2P_3} & \xrightarrow{-P} \\ & & & \\ \operatorname{III} & & & \\ & & & \\ \operatorname{"RuCl_2P_2"} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

It must be emphasized that the only species having a similar stoichiometry is the compound $(RuCl_2P_2)_2$, IV, reported by Wilkinson [5] which, however, is essentially insoluble in all common organic solvents [6].

We now report the synthesis and characterization of soluble $(RuCl_2P_2)_2$ (V) as well as the results of a spectroscopic study of mixtures of P, $(RuCl_2P_2)_2$ and $RuCl_2P_3$ in order to shed more light on the nature of I.

The 1/1 reaction of RuCl₂P₃ with 2-pyridylketones or 2-pyridylcarbaldehyde 2-R-C(O)py (VI, R = CH₃; VII, R = Ph; VIII, R = H) in CHCl₃ or in benzene afforded purple coloured (RuCl₂P₂)₂ (V) in about 75–92% yield (correct C, H, Cl elemental analyses, N absent; dec. at 180 °C; mol. wt. by osmometry in CHCl₃, found 1277, calc. 1392). The fact that the pyridylketone was recovered in high yield (e.g. 93% in the case of VI) strongly suggested that only catalytic amounts of VI–VIII were required to effect the observed reaction. This was confirmed by the isolation of V in 89% yield from the reaction of RuCl₂P₃ with 4 mol.% of VI. Other routes by which V could be isolated almost quantitatively involved: i) the reaction of RuCl₃·3H₂O with sixfold excess of PPh₃ in refluxing ethanol using 4 mol.% of VI as a catalyst; ii) the reaction of insoluble IV (black; dec >220 °C; prepared according to ref. 5 by refluxing III in methylethylketone) with a catalytic amount of VI in CHCl₃ (92% yield) and iii) the reaction of RuHClP₃ [9] with 4 mol.% of VI in CHCl₃ which produced V in 83% yield and CH₂Cl₂ quantitatively (according to GLC) [10].

The nature of V was established by IR and ³¹P-NMR spectroscopy. The IR spectrum of V shows in the 400-200 cm⁻¹ region three strong bands at 326, 293 and at 247 cm⁻¹ which can be attributed to stretching modes of terminal and bridging Cl atoms (compare these data with bands at 326, 294 and at 271 cm⁻¹ for insoluble IV) [11]. ³¹P-NMR spectra of V in CDCl₃ show exclusively one AB pattern (δ_A 43.6 and δ_B 38.8 ppm downfield from 85% H₃PO₄ external, see Fig. 1a) pointing to diastereotopic P-atoms (J_{PP} = 35 Hz). The structure shown in Figure 2 having the P-ligands in cis-position and a square pyramidal coordination geometry [12] around each of the Ru-atoms can account for both these spectroscopic data and the dimeric nature of V. Moreover the intensive purple colour of V is a further support for the proposed pentacoordinate geometry around Ru^{II} [3, 13].

The present data for soluble V are in striking disagreement with the data reported for species II (³¹P-NMR in CH₂Cl₂ at -97 °C, δ_A 58.8 and δ_B 53.0 ppm, J_{PP} 41.5 Hz) [3] which is supposed to have also the structure shown in Figure 2. The following observations make clear that species II must have a different nature [14].

The ³¹P-NMR spectrum of pure $(RuCl_2P_2)_2$ (V) is temperature independent (up to 60 °C) which indicates that intramolecular interchange of ligands is slow on the NMR time-scale or does not occur at all. While evidence for interaction of V with added triphenylphosphine might be deduced from a slight decrease in intensity of the AB pattern at 58 °C, bridge cleavage in V by PPh₃ to produce RuCl₂P₃ definitely does not occur [15].

In the ³¹P-NMR spectrum of our samples of RuCl₂P₃ at -97 °C the AB pattern, which would point to the presence of species II in solution (*cf.* refs. 3 and 4) is clearly lacking (see Fig. 1b). That this is not caused by the presence of Ph₃PO or of excess of PPh₃ [16] in these solutions is implied by the ³¹P-NMR spectra of solutions of a 1/1/1 mixture of P,

^{*}To whom correspondence should be addressed.

Figure 1. ³¹P-NMR spectra of V in CDCl₃ at RT (a); of RuCl₂P₃ in CH₂Cl₂ at -97 °C (b); of RuCl₂P₃/(RuCl₂P₂)₂/ PPh₃ in CDCl₃ at RT (c), 0 °C (d) and at -55 °C (e). In the latter spectrum the position of the AB pattern of II reported in refs. 3 and 4 has been indicated with asterisks. (X = Ph₃PO; X' = PPh₃).

Figure 2. Proposed structure for RuCl₂(PPh₃)₂ dimer (V).

 $RuCl_2P_3$ and $(RuCl_2P_2)_2$ (0.05 *M* in each of the components) in CDCl₃ at different temperatures (see Fig. 1c-e).

These spectra reveal that i) the AB pattern of V is located at a chemical shift position different from that reported for II; ii) the AB pattern is not

coalesced at room temperature (cf. Fig. 1b in ref. 3) and iii) no ligand site-exchange between the various components of the mixture occurs on the NMR time-scale below room temperature.

These results indicate that the real nature of species II must be a point of further discussion. In this respect it is noteworthy that reduction of RuCl₃-P₂ with H₂ (1.5 atm, 1 hr) in DMA [17] affords a red-brown coloured solution of which the ³¹P-NMR spectrum shows only one broadened resonance at 55.7 ppm. This is near the position reported for the coalesced AB pattern of II [3, 4]. However, no change in the shape of the resonance was observed on cooling to temperatures down to -10 °C whereas addition of 4 mol.% of VI to this solution afforded the $RuCl_2P_2$ dimer (V) which was isolated in 84% yield. This suggests that the resonance at 55.7 ppm might be attributed to $RuCl_2P_2$ (DMA), the solvent stabilized 14-electron species "RuCl₂P₂", which subsequently dimerizes upon addition of the pyridylketone VI.

The nature of the catalytic pathway resulting in the formation of V in these ruthenium(II)-phosphine/pyridylketone reactions remains unclear. The first step, dissociation of PPh₃ from RuCl₂P₃, can be effected by acetone [5], ethylmethylketone [5], as well as by acetophenone [5] but all these reactions yielded insoluble IV. In contrast, interaction of pyridine or 4-acetylpyridine with RuCl₂P₃ results in the formation of complexes of the type $RuCl_2P_2(L)_2$ (L = py [5] or 4-MeC(O)py, monomer, dec. at 205 $^{\circ}$ C). It is obvious then that the specific geometry of the N=C-C=O skeleton present in VI-VIII must be of decisive importance in stabilizing the 14-electron intermediate RuCl₂P₂ and in determining the logistics of the bridge-making process which leads to the exclusive formation of the soluble RuCl₂P₂ dimer V.

Further investigations into the nature of the catalytic process as well as of the reactivity of V are in progress.

Acknowledgements

Mr H. Wever and Mr R. H. Fokkens are thanked for recording the 1 H and 31 P NMR spectra.

References

- 1 Throughout this communication P represents PPh₃. Other complexes in which P is (*p*-tolyl)₃P, diphos, *etc.* are in hand.
- 2 B. R. James, Inorg. Chim. Acta Rev., 73 (1970).
- 3 K. G. Caulton, J. Am. Chem. Soc., 96, 3005 (1974).
 P. R. Hoffman and K. G. Caulton, *ibid.*, 97, 4221 (1975).
- 4 P. W. Armit, A. S. F. Boyd and T. A. Stephenson, J. Chem. Soc. Dalton Trans., 1663 (1975).

- 5 J. D. Gilbert and G. Wilkinson, J. Chem. Soc. A, 1749 (1969).
- 6 Poddar et al. [7] reported the synthesis of RuCl₂-(AsPPh₃)₂ dimer which is only partly soluble.
- 7 R. K. Poddar and U. Agarwala, J. Inorg. Nucl. Chem., 35, 567 (1973).
- 8 T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 28, 945 (1966).
- 9 P. S. Hallman, B. R. McGarvey and G. Wilkinson, J. Chem. Soc. A, 3143 (1968).
- 10 A possible route for this reaction involves the formation of Cl₂CHPPh₃Cl⁻ which subsequently is attacked by "RuCIHP₂" thus producing CH₂Cl₂ and "RuCl₂P₂". The latter species dimerizes to V by reaction with methylpyridylketone VI. When benzene was used instead of CHCl₃ as a solvent no reaction occurred.
- 11 On the basis of these data Gilbert and Wilkinson [5] proposed a dimeric structure for IV containing bridging Cl atoms with the two PPh₃ ligands bonded in a *trans* manner to pentacoordinate Ru-atoms. The dimeric nature, however, could not be established by molecular weight determinations as a result of the insolubility of IV.
- 12 Alternatively, the Ru-atoms in V can have a trigonal

bipyramidal structure. However, on the basis of the arguments put forward by Caulton [3] and by Stephenson [4] the structure in Fig. 2 is preferred. An X-ray analysis of the structure of V is underway.

- 13 B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr and G. Wilkinson, J. Chem. Soc. Dalton Trans., 1546 (1977).
- 14 V which is very soluble in CH_2Cl_2 and $CHCl_3$ does not dissolve in benzene or toluene which contrasts with the observation of species II in benzene/toluene solutions of RuCl_2O_3 (cf. ref. 4, p. 1664).
- 15 V does not react with the H₂ or with HCl. Reaction of V with CO yields a dimer $[RuCl_2(CO)P_2]_2$ in which Ru is six-coordinate $[\nu(CO) 1964 (vs), 1939 (vs), 1925 (sh) cm^{-1}]$ while the bands in the 400-200 cm⁻¹ region [326 (m), 278 (m) 253 (m) cm⁻¹] indicate that the bridging and terminal halogen atoms are still present like in V. Reaction of V with excess NEt₃ yields Ru(NEt₃)₄Cl₂ [mol. wt. in CHCl₃, 479 (calc. 576); dec. at 140 °C. Correct C, H and N analyses].
- 16 Armit and Stephenson have shown that the concentration of species II increases when solutions of $RuCl_2P_3$ are exposed to the air [4].
- 17 B. R. James, A. D. Rattray and D. K. W. Wang, Chem. Comm., 792 (1976).